Mapping Typical Urban LULC from Landsat Imagery without Training Samples or Self-Defined Parameters
نویسندگان
چکیده
Land use/land cover (LULC) change is one of the most important indicators in understanding the interactions between humans and the environment. Traditionally, when LULC maps are produced yearly, most existing remote-sensing methods have to collect ground reference data annually, as the classifiers have to be trained individually in each corresponding year. This study presented a novel strategy to map LULC classes without training samples or assigning parameters. First of all, several novel indices were carefully selected from the index pool, which were able to highlight certain LULC very well. Following this, a common unsupervised classifier was employed to extract the LULC from the associated index image without assigning thresholds. Finally, a supervised classification was implemented with samples automatically collected from the unsupervised classification outputs. Results illustrated that the proposed method could achieve satisfactory performance, reaching similar accuracies to traditional approaches. Findings of this study demonstrate that the proposed strategy is a simple and effective alternative to mapping urban LULC. With the proposed strategy, the budget and time required for remote-sensing data processing could be reduced dramatically.
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملMonitoring Urban Tree Cover Using Object-Based Image Analysis and Public Domain Remotely Sensed Data
Urban forest ecosystems provide a range of social and ecological services, but due to the heterogeneity of these canopies their spatial extent is difficult to quantify and monitor. Traditional per-pixel classification methods have been used to map urban canopies, however, such techniques are not generally appropriate for assessing these highly variable landscapes. Landsat imagery has historical...
متن کاملLand Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on Landsat TM /ETM+ Imagery
Land use and land cover change is a major issue in global environment change, and is especially significant in rapidly developing regions in the world. With its economic development, population growth, and urbanization, Guangzhou, a major metropolitan in South China, have experienced a dramatic land use and land cover (LULC) change over the past 30 years. Fast LULC change have resulted in degra...
متن کاملA Feature-Based Approach of Decision Tree Classification to Map Time Series Urban Land Use and Land Cover with Landsat 5 TM and Landsat 8 OLI in a Coastal City, China
Accurate mapping of temporal changes in urban land use and land cover (LULC) is important for monitoring urban expansion and changes in LULC, urban planning, environmental management, and environmental modeling. In this study, we present a feature-based approach of the decision tree classification (FBA-DTC) method for mapping LULC based on spectral and topographic information. Landsat 5 TM and ...
متن کاملSpectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery
This paper examines characteristics of urban land-use and land-cover (LULC) classes using spectral mixture analysis (SMA), and develops a conceptual model for characterizing urban LULC patterns. A Landsat Enhanced Thematic Mapper Plus (ETM+) image of Indianapolis City was used in this research and a minimum noise fraction (MNF) transform was employed to convert the ETM+ image into principal com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017